CARINGBAH HIGH SCHOOL

2010

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

Reading time - 5 minutes

Working time - 2 hours

Write using black or blue pen.

Board-approved calculators may be used.

A table of standard integrals is provided at the back of this paper.

Total marks - 84

Attempt Questions 1 - 7

All questions of equal value.

All necessary working should be shown in every question.

Start each question on a new page.

Question 1 (12 marks)

Marks

(a) Factorise $2x^3 + 54$.

2

(b) Let $f(x) = e^x - 1$. What is the range of f(x)?

1

(c) Given that $\log_a b = 3.4$ and $\log_a c = 4.5$, find $\log_a \left(\frac{b}{c}\right)$.

(f) Using the substitution $u = x^2 + 1$, or otherwise, find the

1

(d) Differentiate $e^{3x} \sin x$

2

(e) Find the exact value of $\int_0^{\frac{\pi}{4}} \cos^2 x \, dx$.

3

exact value of $\int_0^3 \frac{2x}{x^2 + 1} dx.$

3.

Question 2 (12 marks) Start a new page.

(a) The function $f(x) = x^3 - \log_e(x+1)$ has a root near x = 1.

Use one application of Newton's method to obtain another approximation to this root. Give your answer correct to two decimal places.

(b) The polynomial $q(x) = x^3 + 3x^2 + ax + b$ has a factor of (x-2) and a remainder of -9 when divided by (x+1).

Find the values of a and b.

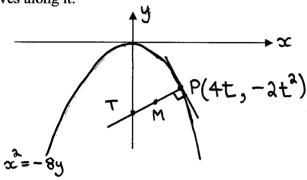
- (c) (i) Express $\sqrt{3} \sin x \cos x$ in the form $A \sin(x \theta)$ where $0 \le \theta \le \frac{\pi}{2}$.
 - (ii) Hence, or otherwise, solve $\sqrt{3} \sin x \cos x = 1$ for $0 \le x \le 2\pi$. Give your answer in exact form.
- (d) Evaluate $\int_0^{\ln 3} e^{2x} dx.$ 2

Question 3 (12 marks) Start a new page.

(a) Find
$$\lim_{x\to 0} \frac{\sin 5x}{2x}$$

1

(b) The diagram shows the parabola $x^2 = -8y$ and the point $P(4t, -2t^2)$ which moves along it.



- (i) Show that the equation of the normal at P is $y = \frac{x}{t} 2t^2 4$.
- 2
- (ii) This normal meets the y-axis at T. The midpoint of PT is M. Find the coordinates of T and M.
- 2

(iii) Find the Cartesian equation of the locus of M.

- 1
- (c) (i) On the same set of axes sketch the graphs of $y = \cos 2x$ and $y = -\frac{1}{2}x$ for $0 \le x \le \pi$. (Show at least 2 points which lie on $y = -\frac{1}{2}x$.)
- 2

- (ii) Use the graph to determine the number of solutions there are to the equation $\cos 2x = -\frac{1}{2}x$ for $0 \le x \le \pi$.
- 1
- (d) Use mathematical induction to prove that $7^n 1$ is divisible by 3, for all integers $n \ge 1$.
- 3

Question 4 (12 marks) Start a new page.

- (a) A particle is moving in a straight line with its acceleration as a function of x given by $\ddot{x} = 3x^2$. It is initially 1 metre to the right of the origin and is travelling with a velocity of $-\sqrt{2}$ metres per second.
- (i) Show that $\dot{x} = -\sqrt{2x^3}$
- (ii) Hence show that $x = \frac{2}{\left(t + \sqrt{2}\right)^2}$
- (b) (i) Find the x-coordinates of stationary points on the curve $y = x 2\sin x \text{ for } 0 \le x \le 2\pi.$
 - (ii) Write down the y-coordinates of these stationary points in exact form.
 - (iii) Find the nature of each of the stationary points.
 - (iv) Find the coordinates of those points on the curve corresponding to x = 0 and 2π .
 - (v) Hence sketch the curve for $0 \le x \le 2\pi$. (You do not have to find any other intercepts with the axes or points of inflexion.)

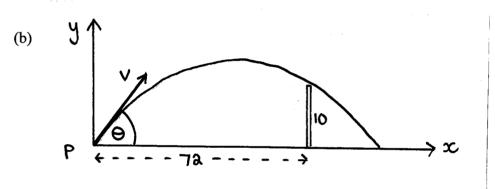
Question 5 (12 marks) Start a new page.

- (a) The displacement x metres of a particle moving in simple harmonic motion is given by $x = 5\sin(\pi t + \frac{\pi}{2})$ where the time t is in seconds.
 - (i) What is the period of the oscillation?
 - (ii) Show that the particle's oscillation starts 5 metres to the right of the equilibrium position.
 - (iii) What is the speed of the particle as it moves through the equilibrium position?
 - (iv) Show that the acceleration of the particle is proportional to the displacement from the equilibrium position.
- (b) Show that for 0 < x < 1, $\frac{d}{dx} \left[\sin^{-1} \sqrt{(1 x^2)} \right] = \frac{-1}{\sqrt{(1 x^2)}}$
- (c) (i) Sketch the graph of $y = \tan x$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.
 - (ii) By using (i), or otherwise, find those values of x 2 satisfying $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ for which the geometric series

 $1 + \sqrt{3} \tan x + 3 \tan^2 x + 3\sqrt{3} \tan^3 x + \dots$ has a limiting sum.

Question 6 (12 marks) Start a new page.

- (a) Consider the function $f(x) = x^2 4x + 7$.
 - (i) Write down the largest positive domain for which f(x) 1 has an inverse function $f^{-1}(x)$.
 - (ii) Find the inverse function $f^{-1}(x)$.
 - (iii) Sketch $y = f^{-1}(x)$ and y = f(x) on the same diagram.



A ball is hit with initial velocity ν from a point P on the ground at an angle of θ with the horizontal.

(i) The equations of the motion of the ball are:

 $\ddot{x} = 0$ and $\ddot{y} = -10$ (i.e. acceleration due to gravity is $10m/s^2$)

Using calculus, show that the position of the ball at time t is given by: 3

$$x = vt\cos\theta$$
 and $y = vt\sin\theta - 5t^2$

(ii) After 2 seconds the ball <u>just</u> clears a wall which is 10 metres high and 72 metres from P.

Calculate the angle of projection θ (to the nearest degree) and the initial velocity ν .

(iii) How far from P does the ball land?

Question 7 (12 marks) Start a new page.

(a) Find
$$\int \frac{1}{\sqrt{49-x^2}} \, dx$$
.

(b) Nicole is staying in the Blue Mountains. She takes a cup of coffee whose temperature is 80° C outside where the air temperature is 5° C.

The temperature of the coffee, $T^0\,C$, after t minutes outside satisfies the equation

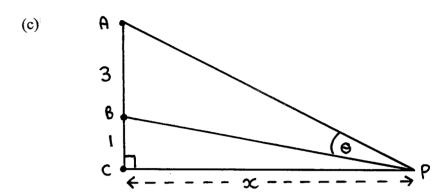
$$\frac{dT}{dt} = -k(T-5).$$

- (i) Show that $T = 5 + 75e^{-kt}$ satisfies both the above equation and the initial condition.
- (ii) After 10 minutes outside the temperature of the coffee is 57° C.

 After how many minutes (to the nearest minute) will the coffee's temperature be 20° C?

Question 7 continues on page 9.

Question 7 (continued)



In the diagram, the goal posts A and B in a children's soccer game are 3 metres apart. Goal post B is 1 metre from the corner post C. A player stands at P on the boundary line x metres from C. The goal posts A and B subtend an angle of θ at P.

(i) Show that
$$\theta = \tan^{-1} \frac{4}{x} - \tan^{-1} \frac{1}{x}$$
.

- (ii) Show that θ is a maximum when x = 2.
- (iii) Deduce that the maximum angle subtended at P is $\theta = \tan^{-1} \frac{3}{4}$.

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

CHS EXT. I TRIAL HSC 2010

$$\overline{I \otimes 2(x^3+21)} = 2(x+3)(x^2-3x+9)$$

©
$$\log_a(\frac{b}{c}) = \log_a b - \log_a c$$

= $3.4 - 4.5$

$$0 = e^{3x}$$

$$u' = 3e^{3x}$$

$$v' = \cos x$$

PRODUCT RULE:
$$y' = Vu' + uV'$$

$$= \sin x \cdot 3e^x + e^{3x} \cos x$$

$$= e^{3x} (3\sin x + \cos x)$$

(e)
$$\cos 3x = 3\cos^3x - 1$$

$$\therefore \cos^2 x = \frac{1}{3}(1+\cos 3x)$$

$$\int_0^{\frac{\pi}{3}}\cos^3x = \frac{1}{3}\int_0^{\frac{\pi}{3}}1+\cos 3x dx$$

$$= \frac{1}{3}\left[x+\frac{1}{3}\sin x\right]_0^{\frac{\pi}{3}}$$

$$\Re x = 0: u = 1$$

 $x = 3: u = 10$

$$\frac{du}{dx} = 3x$$

$$\therefore du = 3x dx$$

$$\therefore \int_{0}^{3} \frac{3x dx}{x^{2} + 1} = \int_{0}^{10} \frac{du}{u}$$

$$= [\ln u]_{1}^{10}$$

$$= \ln 10$$

2. a)
$$f'(x) = 30x^2 - \frac{1}{x+1}$$
 $f'(1) = 3 - \frac{1}{3} = 3.5$

and $f(1) = 1 - \ln 3 = 0.307$
 $Z_{\lambda} = Z_{1} - \frac{f(Z_{1})}{f'(Z_{1})}$
 $= 1 - \frac{0.307}{3.5}$
 $= 0.88$

$$\bigcirc\bigcirc\bigcirc\sqrt{\left(\sqrt{2}\right)_3+1_3}=3$$

:.
$$\sqrt{3} \sin x - \cos x = \lambda \left(\frac{3}{2} \sin x - \frac{1}{2} \cos x \right)$$

$$= \lambda \left(\cos \theta \sin x - \sin \theta \cos x \right)$$

$$= \lambda \left(\cos \theta \sin x - \sin \theta \cos x \right)$$

$$= \lambda \sin (x - \theta)$$

(ii)
$$\sqrt{3} \sin x - \cos x = 1$$

 $2 \sin (x - \sqrt{3}) = 1$
 $\sin (x - \sqrt{3}) = \frac{1}{2}$
 $(x - \sqrt{3}) = \sqrt{3}$
 $x = \sqrt{3}$

$$3\cancel{b}\cancel{0}y = -\frac{1}{8}x^{2}$$

$$y' = -\frac{1}{4}x$$

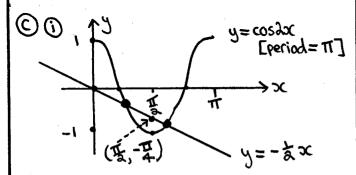
At
$$(4t, -2t^2)$$
: $M_{1AN} = -\frac{1}{4} \times 4t = -t$

EQUN NORM:
$$y + \lambda t^2 = \frac{1}{t}(x - 4t)$$

$$M: x = \frac{4t+0}{a}, y = \frac{-\lambda t^2 - \lambda t^2 + \lambda}{a}$$

$$= 2t = -\lambda t^2 - \lambda$$

(ii) sub
$$t = \frac{\infty}{2}$$
 into $y = -\lambda t^2 - \lambda$
 $y = -\lambda \times \frac{3x^2}{4} - \lambda$
 $= -\frac{1}{2}x^2 - \lambda$



(ii) 2 points of intersection.

$$cos \lambda x = - \pm x has \lambda solns$$

(d) STEP1: Prove true for
$$n=1$$

 $7'-1=6$ which is divise by 3

STEP 2: Assume true for
$$n=k$$

i.e. $7^{k}-1=3M$ (M an integer)

Hence prove true for
$$n = k+1$$

i.e. $7^{k+1} - 1$ also divis. by 3
Now $7^{k+1} - 1 = 7$. $7^k - 1$

=
$$7.(3M+1)-1$$
 by our assumption

$$= 31M+J-1$$

$$= \lambda IM + 6$$

STEP 3: we assumed true for k and hence proved true for n = k+1. Since true for n=1 then by the Principle of Mathematical Induction true for all positive integers.

4. (a)
$$\frac{1}{2}(\frac{1}{2}v^{2}) = 3x^{2}$$

 $\frac{1}{2}v^{2} = x^{3} + c$
Sub $x=1, v=-\sqrt{2}$: $1=1+c \Rightarrow c=0$

$$\frac{dx}{dt} = -\sqrt{3}x^{3}$$

$$\frac{dt}{dx} = -\sqrt{3}x^{3}$$

$$\frac{dt}{dx} = -\sqrt{3}x^{3} = -\sqrt{3}x^{3}$$

$$t = -\sqrt{3}x^{3} + c$$

$$= \sqrt{3}x^{3} + c$$

$$= \sqrt{3}x^{3} + c$$

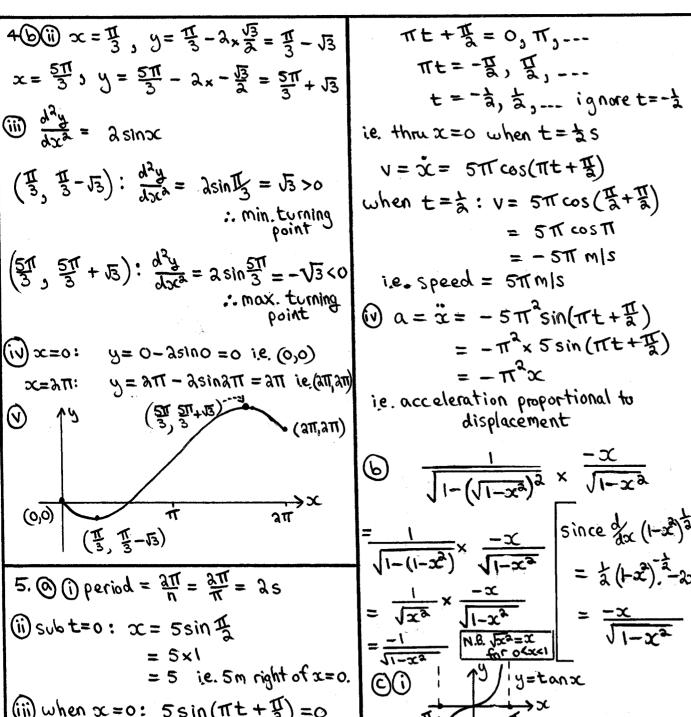
$$t + \sqrt{x} = \frac{\sqrt{x}}{\sqrt{x}}$$

$$(t + \sqrt{x})^2 = \frac{2}{x}$$

$$x = \frac{2}{(t + \sqrt{a})^2}$$

$$1 - \lambda \cos x = 0$$

$$\cos x = \frac{1}{3}, \frac{5\pi}{3}$$

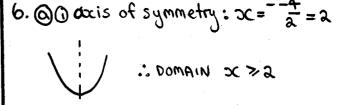


(i) series has limiting sum if -1<<1.

Here
$$r = \sqrt{3} \tan x$$

ie. $-1 < \sqrt{3} \tan x < 1$
 $-\frac{1}{\sqrt{3}} < \tan x < \frac{1}{\sqrt{3}}$

. $-\frac{1}{6} < x < \frac{\pi}{6}$



(i)
$$5 w a p x, y : x = y^2 - 4y + 7$$

 $x - 7 = y^2 - 4y$
 $x - 7 + 4 = y^2 - 4y + 4$
 $x - 3 = (y - x)^2$
 $y - 2 = \pm \sqrt{x - 3}$
 $y = 2 \pm \sqrt{x - 3}$

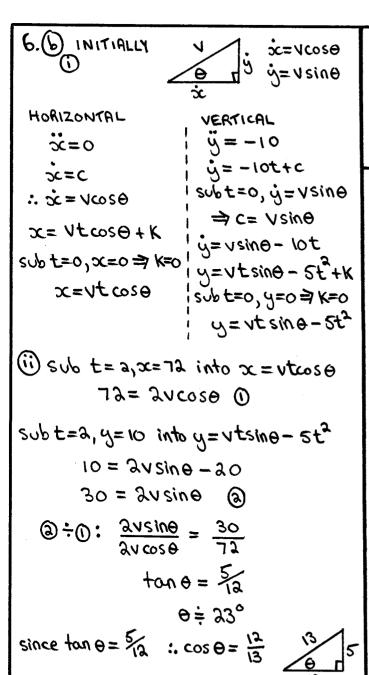
TAKE 4= 2+ 1x-3 SINCE RANGE of f (x) is y > 2

$$y = f(x)$$

$$y = f'(x)$$

$$y = f'(x)$$

$$(3,2)$$



 $\begin{bmatrix} \sin \theta = \frac{5}{13} \end{bmatrix}$

so 0: 72 = 2 V x 12

v= 39 m15

(ii)
$$y = 39 \pm x \frac{5}{13} - 5t^2 = 15t - 5t^2$$

hits ground when $y = 0$: $15t - 5t^2 = 0$
 $5t(3-t) = 0$
 $t = 0, 3$.

:. dist. from P : $2c = 39 \times 3 \times \frac{12}{13}$
 $= 108m$

7. (a) $\sin^{-1} \frac{2c}{17} + C$

(b) $T = 5 + 75e^{-kt}$
 $= -k \times 75e^{-kt}$
 $= -k \times 75e^{-kt}$
 $= -k \times 75e^{-kt}$

olso when $t = 0$: $t = 5 + 75e^{0} = 80$

(ii) $sub t = 10, T = 57 : 57 = 5 + 75e^{-10k}$
 $5a = 75$